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Abstract

While piezoelectric actuators have been widely used in vibration suppression and high precision controls, their intrinsic
nonlinearity such as hysteresis, if not considered in control design, may deteriorate the system performance. In this
research, a new methodology is proposed for the high-precision and robust control using piezoelectric actuator with
hysteresis compensation. This methodology is featured by the introduction of a resistance/inductance circuit connected to
the piezoelectric actuator to form an actuator network and a new integral continuous sliding mode control (ICSMC)
algorithm. In addition to the well-known increased passive damping and active control authority, the main advantage of
the actuator network in this particular study is that the charge and/or current in the piezoelectric actuator now become
independent state variables that can be directly measured and fed back. Not only can this actuator network configuration
improve the hysteresis characterization, the control design can also be greatly simplified. With the introduction of the RL
shunt circuit, two dynamic subsystems (the mechanical structure and the electrical circuit) are formed. With these two
coupled dynamic subsystems as basis, we then develop an ICSMC scheme which combines the advantages of conventional
continuous sliding mode control and integral variable structure control. Different from the inverse cancellation of
hysteresis behavior which might not be reliable due to the measurement noise, a direct piezoelectric hysteresis
compensation is achieved using this control strategy. Detailed analysis and case studies demonstrate that this new
methodology can lead to improved precision for both tracking control and vibration attenuation, enhanced control
robustness, and smoother control action.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Because of their electromechanical coupling characteristics, piezoelectric materials have been widely utilized
as actuators in such as vibration control and micro-positioning applications. Some advantages of piezoelectric
actuators include high bandwidth, compactness, and easy integration. While high precision is oftentimes also
claimed as one of the advantages, the performance of piezoelectric actuators in this regard is clearly dependent
upon the modeling accuracy and control algorithms. Until recently, most of the studies related to piezoelectric
actuators have been based upon a linear strain-field constitutive relation assumption. The presence of
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Nomenclature Iy, I,  length
P generalized electrical displacement
A cross section area 0 charge flow to the piezoelectric patch
cp uniform beam damping constant q generalized mechanical displacement
D electrical displacement x1,Xx, left and right ends of piezoelectric patch
E electrical field Wy, W, width
E,, E, Young’s modulus P, pp density
hy, thickness of piezoelectric patch ¢ beam first mode
I moment of inertia v assumed mode for electrical displacement

nonlinearities in the response of piezoelectric materials, however, has been well documented since the early
description of ferroelectrics [1]. The physics involved in piezoelectric theory may be regarded as a coupling
between Maxwell’s equations of electromagnetism and elastic stress equations of motion. The coupling takes
place through the piezoelectric constitutive equations. Normally, in practical applications the electrical field
(against the poling direction) applied to the piezoelectric actuator should be kept below the coercive field to
avoid depoling. Moreover, experiments have revealed that even in cases where the applied fields are not
sufficient to completely re-orient the remnant polarization in the entire actuator, a small number of domains
can still be switched [2]. Thus, both the material states and the electro-mechanical coupling are changed, giving
rise to the hysteretic strain-field behavior even at very low field level.

The hysteresis phenomenon obviously affects the piezoelectric control performance, and there has been
recent interest in modeling such behavior [3-9]. In general, the hysteresis can be characterized by using the
Preisach model [4-6] or its variant, the Maxwell resistive capacitor (MRC) model [7-9]. The Preisach model
consists of a weighted summation of an infinite number of the simplest hysteresis operator (Fig. 1), each
representing a rectangular loop in the input—output diagram. To avoid the amplification of measurement error
in the classical Preisach model (CPM) that involves the differential operation, Ge and Jouaneh proposed a
new calculation scheme, which is essentially a two-dimensional interpolation [5,6]. MRC model is composed
of a number of elasto-slide elements connected in parallel (Fig. 2(b)). Each of these elements is subject to a
Coulomb friction force. This model can represent the hysteresis relation between the force and displacement
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Fig. 1. The simplest hysteresis operator y,; is a rectangular loop with an up switch at « and a down switch at f.
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Fig. 2. Schematic representation of (MRC) hysteresis model: (a) equivalent electric circuit, (b) equivalent mechanical analogy.

[7-9]. Both Preisach model and MRC model, albeit complicated, can be used to accurately describe the
piezoelectric hysteresis [4-9]. Researchers have also attempted to model the piezoelectric hysteresis behavior
using polynomial approximation [10] and time delay process [11]. Following these modeling studies, several
control strategies have been proposed to deal with the hysteresis nonlinearity involved in piezoelectric
actuators, which include hysteresis cancellation using inverse model [12-15], feedback linearization [16], and
Smith predictor [11]. Ge and Jouaneh proposed an inverse linearized Preisach model to offset the hysteresis of
the piezoelectric actuator in the feedforward loop [12]. Similarly, based on a polynomial approximation of
hysteresis effect, an inverse polynomial was developed by several researchers to cancel the hysteresis
nonlinearity [13,15,17]. Kung and Fung developed a neural network based inverse hysteresis model [14]. Choi
et al. employed a feedback linearization technique to deal with piezoelectric hysteresis and utilized a PID/
repetitive controller to enhance the tracking performance [16]. Tsai and Chen used a Smith predictor to handle
the time delay approximation of hysteresis, and an H, controller is proposed to guarantee the robust tracking
performance [11]. In these approaches, several factors may deteriorate the control performance. For example,
very complex coupling effects exist among the stress, strain, electrical field, and electrical displacement of a
piezoelectric actuator. Thus, the hysteretic strain-field relation of the actuator actually also depends on the
electrical displacement/charge and stress which are typically treated as internal variables in the
aforementioned control designs. The estimation of these internal variables and hence the characterization
of hysteresis become extremely complicated and even unreliable in practical applications when the actuator is
bonded to a host structure and thus also undergoes deformation. Moreover, the forward physical process
(hysteresis) is usually an integral process, and in inverse modeling/cancellation methods, the differential
operation will be involved in the hysteresis inverse calculation. As a result, the inverse model obtained may not
be reliable when the hysteresis measurement data contains noise. It is worth noting that in all the hysteresis
compensation approaches mentioned above, one will inevitably have a modeling error due to the inaccurate
hysteresis modeling or its inverse and the un-modeled dynamics, etc. The control robustness, nevertheless, has
not been sufficiently addressed in these hysteresis-related studies. Tang and Wang recently explored the
piezoelectric robust control using a sliding mode theory, where the linear constitutive relation is used as the
baseline and all nonlinearities are considered as uncertainties [18]. Such approach has not utilized the progress
in hysteresis modeling, and is conservative in nature and may compromise the system control performance
especially in high precision applications.
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Fig. 3. Cantilevered beam with a piezoelectric actuator circuit.

In the present study, we develop a new methodology for the robust and high precision control using
piezoelectric actuator with hysteresis compensation. The MRC model is employed to characterize the
piezoelectric hysteresis, where experimental data from the open literature [9,19] are used. Without loss of
generality, a cantilevered beam bonded with a piezoelectric actuator is used to illustrate the control strategy
(Fig. 3). In this approach, a resistor/inductor (RL) shunt circuit is connected in series with the piezoelectric
actuator to form an actuator network. In addition to the increased passive damping and active control
authority [20], the main advantage of this actuator network is that the charge and/or current in the
piezoelectric actuator now become independent state variables that can be directly measured and fed back.
Not only can this actuator network configuration improve the hysteresis characterization accuracy, the
control design can also be greatly simplified. With the introduction of the RL shunt circuit, the controlled
system now consists of two coupled second-order dynamic subsystems, the mechanical subsystem and the
electrical subsystem, whereas the nonlinearity only appears explicitly as a function of the electrical charge.
This nonlinear dynamic system can be readily cast into the standard state-space form, and we then develop an
integral continuous sliding mode control (ICSMC) which combines the advantages of conventional
continuous sliding mode control (CSMC) [21] and integral variable structure control (IVSC) [22]. This
approach can directly compensate the piezoelectric hysteretic nonlinearity. Detailed analysis and case studies
demonstrate that this new methodology can lead to improved precision for both tracking control and
vibration attenuation, enhanced control robustness, and smoother control action.

2. Hysteretic behavior of piezoelectric material and system modeling

Piezoelectric materials are ferroelectric, and their displacement responses to an applied electrical field are
intrinsically nonlinear. The physical explanation of this phenomenon provided by Chen and Montgomery [23]
shows that the effective number of dipoles aligned in the direction of the applied field changes over time as
domains switch under the action of an external electric field. This essentially gives rise to the hysteresis
behavior (Fig. 4).

2.1. Piezoelectric hysteresis characterization

The Preisach model basically is the continuous analog of a finite parallel connection of relays. Generally,
two aspects of nonlinearities are involved in hysteretic behavior [4]: one is the hysteretic nonlinearity with local
memory where the future output depends only on the future input; the other is the hysteretic nonlinearity with
non-local memory where the future output depends not only upon the current output and future input but also
on the past history of input switching values [5]. When used to describe the piezoelectric hysteresis, the CPM
can be written as [4-6]

2(0) = / / (o By lu(t)] dezdB, (1)

a=f
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Fig. 4. Hysteresis loop of a piezoelectric actuator.

where y(¢) is the displacement response of the piezoelectric actuator, u(¢) is the input voltage, u(o, f) is a
weighting function, 7,4 is the hysteresis relay operator whose value is determined by the input operation , and
o and f represent “up” and ‘“down” switching values of the input (Fig. 1). In order to calculate the
displacement response, the weighting function u(«, ) needs to be known, which is traditionally calculated by
differentiating the Preisach function I'(«, 8') in the following manner [5]:

o', B)
o' 0f

where I'(o/, '), which can be obtained from experimental data, represents the change in the hysteresis loop of
displacement response when the input voltage wu(z) changes from o'(orf’) to f'(or o) (Fig. 4). As the
experimental data usually contains measurement noise, the differential operation in Eq. (2) will amplify the
error. As a result, the model might not be reliable. To bypass the differential operation, Ge and Jouaneh
proposed a new calculation scheme which is implemented through the two-dimensional interpolation using
experimental data [5,6]. A typical hysteretic response under a decaying sinusoidal input excitation described by
the CPM model is shown in Fig. 4. It is worth noting that the trajectory shows a jump (discontinuous point) at
the switching point due to the interpolation variables switching from f (or «) to o (or f3).

The hysteresis behavior can also be modeled using the MRC representation [7-9], which consists of a
number of elasto-slide elements subject to Coulomb friction connected in parallel (Fig. 2(b)). If the element
number becomes infinite, the model is referred to as generalized Maxwell slip. This model can be extended to
its electrical analogy to represent the piezoelectric hysteresis behavior (Fig. 2(a)). By introducing a parameter y
to account for a reversible nonlinear stiffness effect (Fig. 2(b)), Lee and Royston extended the MRC model [9],
which is represented as

wo!, B = 2)

un="> E, (3a)
i=1
where

re?

ER=¢ 4 - A o (3b)
esgn[Ds] and DY is subject to ‘ﬁ3§’)[1 +9(D3y — DY)(D3 — DY)| = €@ otherwise.

0+ (D5 = DPDs = DY), if | BP0 + (D3 = DPIDs = DY) <ef?
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Correspondingly, [33T3, en, U, e, and Dy, are, respectively, the electrical analogies to the mechanical spring
stiffness, normal force, Coulomb friction coefficient, Coulomb friction force, and the displacement from the
equilibrium position of a massless box (Fig. 2(b)). Here n is the number of massless boxes.

Both CPM and MRC have been successfully utilized for the modeling of piezoelectric hysteresis [5-9]. It is
worth mentioning that the new control strategy developed in this research does not particularly depend upon a
specific hysteresis model, i.e., either CPM (Eq. (1)) or MRC (Eq. (3)) or other hysteresis models can be inserted
into the control design. Without loss of generality, in what follows we use MRC to demonstrate the control
design.

2.2. Nonlinear dynamic model of a cantilevered beam integrated with a piezoelectric actuator circuit

The purpose of this paper is to develop a new control strategy for the robust and high precision control
using piezoelectric actuator with hysteresis compensation. To illustrate the system development, we use a
cantilevered beam as an example for control design (Fig. 3). The control objective could be tracking control or
vibration suppression. For the beam problem, the following linear piezoelectric constitutive relation has been
widely used [24]:

Si=s0T\+ g3 D3, E;=—gyTi+ pi3Ds, (4a,b)

where “1” is the longitudinal direction, “2” the width direction, *“3” the transversal direction (Fig. 3), S the
strain, 7 the stress, D the electrical displacement, and E the electrical field [24]. Here it is usually assumed that
the stress components at the beam width direction and at the transversal direction are both zero, and the in-
plane components of the electrical displacement and electrical field are all zero, ie., T3=T,=
Dy =D, =E|,=E;, =0. It is well known that the electrical field (against the poling direction) applied to
the piezoelectric actuator should be kept below the coercive field to avoid depoling. Recent studies have
revealed, however, that even in cases that the applied fields are not sufficient to completely re-orient the
remnant polarization in the entire actuator, a small number of domains can still be switched. Thus, both the
material states and the electro-mechanical coupling are changed, giving rise to the hysteretic strain-field
behavior even at very low field level. A number of experimental observations show that the electrical
displacement D and electrical field E exhibits a strong hysteretic behavior [7,9,19,25,26]. Under zero stress 7,
while the applied electrical displacement D versus strain S relation is reversible (without hysteresis), the
applied electrical field E versus S is not. It has been identified that the mechanical stress—strain relation under
constant electrical displacement is reversible, but this relation under constant electrical field is hysteretic [7]. In
addition, the relation between the applied stress and the electrical displacement is hysteretic [27-29]. In order
to account for all these characteristics, a nonlinear term should be introduced to the original linear constitutive
relation [9]. It is worth mentioning that the Poisson’s ratio of the piezoelectric actuator is generally different
from that of the beam and, consequently, the stress component 7, is not zero. Combining all above
observations, we can get the following relation for a piezoelectric actuator [9]:

T1=c08) —hyDs, Es=—g3,(¢D + ¢D)S1 + 2h3195, D3 + (B33 D). (5a,b)

where &P = b —v,cf, and & =P, —v,c8, and the Poisson’s ratio of the piezoelectric material is
v, = —S3/S1. In Eq. (5b), {} is the hysteresis operator and {[33T3D3} denotes the hysteresis effect, which can be
either the MRC model, CPM model or other nonlinear models.

The mathematical model of a cantilevered beam integrated with a piezoelectric actuator is developed under
the following assumptions: (1) the bonding between the beam and the piezoelectric actuator is perfect, i.e., the
beam and the actuator have the same displacement at the bonding location; (2) the poling direction of the
piezoelectric actuator is in the positive transversal direction of the beam; (3) the piezoelectric actuator is thin
and short compared to the beam.

The system equations can then be derived using Hamilton’s principle and the assumed mode method. In this
study, we use a single mode, the dominant beam mode, for discretization. The transversal displacement of the
beam can be expressed as

w(x, 1) = p(x)q(0), (6)
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where ¢ is the first mode of the cantilevered beam without the piezoelectric patch, and ¢ is the generalized
mechanical displacement. We can then obtain the system equations (see Appendix A for details)

mj+gq+kq+kiQ="Fu kQ+kq+f(Q)=7V. (7a,b)

where m is the equivalent mass, ¢ the generalized mechanical displacement, g the beam equivalent damping, k&
the equivalent stiffness, ki and k3 the cross coupling coefficients, F,, the external disturbance force, Q the
charge flow to the piezoelectric actuator, k, the inverse of capacitance of the piezoelectric actuator, /, the
actuator thickness, and ¥, the voltage across the piezoelectric actuator. It is worth emphasizing that f(Q) =
h,{B3;0) is a nonlinear function of Q and reflects the hysteresis behavior.

Observe Egs. (7a,b) and note that the input voltage across the piezoelectric actuator is V,. When the
hysteresis effect f{Q) is neglected, one can combine the mechanical (dynamic) Eq. (7a) and the electrical (static)
Eq. (7b) together by eliminating the generalized electrical coordinate Q. The presence of piezoelectric
hysteresis, however, rules out the possibility of mathematically eliminating Q. The main difficulty in
developing a control algorithm for the nonlinear system described by Eqgs. (7a,b) appears to be that the second
equation is a static one that contains an extremely complicated nonlinear term that is possibly subjected to
modeling error and uncertainties.

In literature, a variety of control approaches have been proposed to deal with the piezoelectric nonlinear
behavior with different complexity of hysteresis models [10-17]. One approach is based upon the inverse
hysteresis modeling in the feedforward controller, and a feedback is used to regulate the output error.
Polynomial approximation and neural network were employed to model the inverse hysteresis [13—15,17].
Another approach used is the traditional feedback linearization [16]. Based on a time delay model, a Smith
predictor is employed to compensate the hysteresis nonlinearity [11]. In these approaches, several factors may
deteriorate the control performance. For example, the forward physical process (hysteresis) is usually an
integral process, while in inverse modeling/cancellation methods the differential operation will be involved in
the hysteresis inverse calculation. As a result, the inverse model obtained may not be reliable when the
hysteresis measurement data contains noise. In addition, typical inverse design approach treats the hysteresis
and structural dynamics separately, i.c., the hysteresis is decoupled from structural dynamics. Such separation,
however, is difficult to achieve in the practical measurement of piezoelectric actuation. It is worth mentioning
that most of the aforementioned approaches were developed for piezoelectric stack actuator where the motion
of the actuator is along the poling direction. The case of piezoelectric patch actuator that is being discussed in
this research generally has more complicated nonlinear coupling effect.

In this research, we propose a different approach for dealing with the piezoelectric hysteresis by introducing
dynamics to the electrical part of the controlled system. Here we use the idea of shunting the piezoelectric
actuator with an RL circuit [20,30], as shown in Fig. 3. The system equations then become (see Appendix A)

LO+ RO+ k0 +kzg+f(Q) =V, (8b)

where L and R are the inductance and resistance, respectively, and V; is the control input. Observe Eqgs. (8a)
and (8b) and compare them with Eq. (7a,b). Cleary, the main advantage of introducing dynamics to the
piezoelectric actuator is that the charge and/or current in the piezoelectric actuator now become independent
state variables that can be directly measured and fed back [20,30]. Not only can this actuator network
configuration improve the hysteresis characterization accuracy, the control design can also be greatly
simplified. With the introduction of the RL shunt circuit, the controlled system now consists of two coupled
second-order dynamic subsystems, the mechanical subsystem (8a) and the electrical subsystem (8b), whereas
the nonlinearity only appears explicitly as a function of the electrical charge. As will be shown later, this
nonlinear dynamic system can be readily cast into the standard state-space form, and one may then use
various nonlinear control methods to handle the hysteresis problem. It should be noted that the
aforementioned piezoelectric actuator network configuration has also shown improved passive damping
and active control authority. Under the linear constitution relation assumption, one may find optimal
resistance and inductance values for the maximum damping and/or active authority amplification [20,30].
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Fig. 5. Hysteresis behavior (MRC) of a piezoelectric actuator due to the free vibration of cantilever beam.

Table 1
MRC parameters of a monolithic piezoelectric actuator [8]

BT % 1076 0.30868 0.23188 0.18356 0.41700 1.67796
el 0.08996 0.13515 0.16048 0.16529 oo
Table 2

System parameters used in simulation [8,18]

I, =03m wp = 0.0381m hy =0.003175m

pp = 7.8335 x 10° kg/m’ Ep = 19818 x 10'' N/m? Cp = 2.0576

w, = 0.0343m hy = 0.000267 m X7 =0.02m

X, =0.0724m p, = 7.8 x 10*kg/m’ E, =62 x 10°°N/m’
h3p = —1.35%x 10°V/m g3 = —9.5x 1073 Vm/N &P =10.64 x 10" N/m?
éb = —5.68 x 10'° N/m2 L=76h R =3090Q

Throughout this paper, without loss of generality, the inductance L and resistance R are chosen in such a
manner that they yield the maximum vibration damping/absorbing under passive situation [20].

The piezoelectric hysteresis effect f{Q) in Eq. (8) (illustrated in Fig. 3) is demonstrated in Fig. 5, where an
initial velocity is imposed on the tip of the beam with both external disturbance F,, and input voltage V; being
zero. Here we use the MRC model in the simulation, and all system parameters are listed in Tables 1 and 2.

3. Integral continuous sliding mode control (ICSMC) design

System (8) can be readily cast into the standard state-space form

X = Ax — Bf(x3) + Bu+ DF,,,

©)
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where
X'=b x» oy xu'=i¢ ¢ 0 O, (10a)
0 1 0 0
k9 ko,
m m m
A=19 0o o 1 | (10b)
ko ky R
L L L
1! 1 T
B = {o,o,o,—} , D'= [o,—,o,o} , (10c,d)
L m

where u represents the control input V;. Its worth mentioning that all the system parameters are subject to
uncertainties. In this paper, full state feedback is assumed. For system (9), various nonlinear control methods
could be implemented. While the traditional feedback linearization technique is straightforward, parameter
uncertainties of the system and modeling error/uncertainty on the hysteresis effect might deteriorate the
control performance. In this study, we develop an ICSMC that is improved from conventional CSMC [21] and
IVSC [22]. This method can directly deal with the hysteresis nonlinearity in forward cancellation, and also
allows us to implement cubic state feedback which improves the system robustness as compared with IVSC.

The unique feature of the variable structure control is that the desired system dynamics with required
performances (static and dynamic characteristics) can be designed using a sliding manifold [31,32]. The
designed system dynamics is generally of lower order than the original system. Once the reduced order system
with the sliding manifold is provided, a variable structure control action, which consists of the equivalent
control action and the switching control action, is developed so that the switching control action constraints
the system to follow the designed sliding manifold while the equivalent control action controls the
performance of the reduced order dynamic system. Therefore, a typical variable structure control design
consists of two modes, the reaching mode and the sliding mode [31,32]. For the reaching mode, the control
action is to force the response of the system to reach the sliding manifold in finite time. Once it enters the
sliding manifold, the response of the system will be constrained to follow the sliding manifold and approach
the steady state. Consequently, the performances of the system will depend on not only the reaching mode but
also the characteristics of the sliding manifold. One of the fundamental requirements of the sliding manifold
definition is that the system dynamics should be stable and have robustness once it enters the sliding motion,
so that the system can finally reach the zero point (the steady state of the system). While the traditional
manifold design using linear combination of system states can meet certain performance requirement such as
robust stability, it is difficult to satisfy the tracking performance when the system is required to follow a
reference input signal [22,33]. The integral control (based on internal model principle), as an effective
approach of eliminating errors, has been widely employed in tracking control [34]. The combination of
integral control and variable structure control, which leads to the IVSC, was first proposed to control the
electrohydraulic velocity servosystems [22], and then generalized to an MIMO system [33]. Essentially, the
integral of the tracking error is used in the definition of the sliding manifold. On the other hand, the control
action of traditional variable structure is discontinuous in nature due to the switching control at the reaching
mode, which leads to the chattering phenomenon and in turn may trigger the high frequency un-modeled
dynamics. To improve, Zhou and Fisher developed a CSMC [21]. This approach retains the positive properties
such as robustness and disturbance rejection capability of traditional variable structure control, and in the
meantime uses a continuous control law to completely eliminate the chattering problem on the other.
However, this CSMC cannot be directly applied when the system is commanded to track a reference signal.

In what follows, we develop an ICSMC, which is a combination of CSMC and ISVC. This approach can
directly deal with both the tracking problem and the hysteresis nonlinearity, which keeps the merits of CSMC
such as robustness and continuous control action as long as the reference signal is continuous.
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3.1. Determination of control action
We define
t
2= [ b= s (an
0

where r,; is the reference input signal, and / the beam length. Clearly, z indicates the tracking error between the
command input signal and the actual beam tip displacement. The block diagram of the ICSMC to minimize z
is shown in Fig. 6. We then define the sliding manifold as [22,33]

4
s= et es [l - pmldi=Cx +s [l = pmldr (12
i=1

where C = [cy, ¢2, ¢3, C4]T. Essentially, the sliding manifold is a linear combination of the system states and the
tracking error term.

In order to compensate the piezoelectric hysteresis and attenuate the external disturbance, here we propose
the following control action for system (9):

u=—Kx+1(x3) — ug, (13)

where K = [K, K>, K3, K4] denotes state gain, f is the hysteresis estimation, and u, is the disturbance rejection
term. As will be shown later, this control action actually leads to a cubic state feedback. Therefore, once the
states move away from the sliding manifold, the proposed ICSMC will provide more powerful control and
faster reaction due to its cubic feedback nature. It is still worth mentioning that, following along the similar
approach developed in Ref. [21] for nonlinear systems, one may end up with a feedback control that is of first
or second order, which, in general, leads to less efficient control actions.

We now apply the reaching condition

55<0. (14)

Recalling Egs. (13) and (9), and assuming CTB#0 with a constant sign (e.g., CTB>0), we obtain
5§ = s{C"x + es[rg — p(Dx1]} = sC" B{[e — K]x + [B + yesra — ual}. (15)

where
o= (CTB)N(CTA — Ay) = [, 0, 03, 0a], (16a)
B=(C'By"'C'DF, +Af, y=(C"B)", (16b,c)
Ay =[es$(1),0,0,0],  Af = f(x3) — f(x3). (16d.¢)
Denote

__sup o; +inf o;

al_ 2 b i:192)3)4 (17)
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= sup f + inf B’ 5 Sup y + inf y’ B Sup B+ inf B. (18—20)
2 2 2
Using Eq. (20), we have
C"B=¢(C"B), 0<e<l. (21)
In order to satisfy the reaching condition (14), we may choose the control parameters
T
Bx;
K; =4+ (sup o; — &; + 9;) sCi al , 0;>0, i=1,23,4, (22)
T - sC'B
ug =+ jesra + {[sup p— 1+ () — P)esra + dal — 04>0, (23)
where
sup y when ¢sry>0,
5 { ! pv 5 (24)
inf y  when ¢sry <0

and A, §; (i=1,2,3,4) and J, are design parameters. Indeed, 4 is the boundary layer thickness of the sliding
manifold [21].
Substituting K; and u,; into Eq. (15), we obtain

4
5§ = sCTB{Z[(oc,- — ;) — (sup o; — & + 6;)sCT Bx;/2]x;

i=1
H(B =B+ (¢ = Desral = [(sup B — B)+ (7 — Pesra + 5d]SCTB/i}- (25)

Combining Egs. (25) and (21) yields

i=1 i=1

4 4
5§ = S{Z[OC,' — )sCTBx; + [(B— B) + (2 — PesralsCTB = (sup o — & + (5,»)(sCTl_3x,-)2%

~lsup = -+ G = pesra + 36CTB . 6)

One can see from the above equation that the reaching condition (14) is guaranteed if the following
conditions are satisfied:

|sCTBx;|>2, i=1,23,4, (27)

|sCTB|> 1. (28)

Observe Egs. (13), (22) and (23). One may see that the proposed control action will cancel the hysteresis
effect and also achieve a cubic order state feedback. It is worth mentioning that the control action of Eq. (13)
with parameters given in Eqs. (22) and (23) is continuous as long as the reference input r; is a continuous
signal. If the reference signal has discontinuity (e.g., a step input), the control action will correspondingly be
discontinuous. However, in the overall control action shown in Eq. (13), the effect of reference input r; only
appears as a linear term (see Eq. (23)). Compared to the cubic state feedback (the first term in the right hand
side of Eq. (13)), one may envision that the control action corresponding to a reference discontinuity will have
a relatively small effect on the overall control action. This will be further illustrated in the simulations that
follow. In comparison, the conventional IVSC [22,33] (see Appendix C) uses a linear state feedback and, as a
result, the discontinuous effect will be more significant. In addition, the switching control also could play its
role at this discontinuous point, i.e., attempting to confine the states within the boundary layer of the sliding
manifold, which will intensify the discontinuity of control action. It is clear that the control action of ICSMC
will be smoother than that of the conventional IVSC under the same discontinuous reference input. The
detailed comparisons will be provided in the simulation section.
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It is often recognized that s = 0 when the system enters the sliding manifold [22,31-33]. However, generally
s# 0 because of the non-zero boundary layer thickness and the tracking error. Here we set s = 6(¢), where |6(¢)|
is less than the boundary layer thickness, when the system is confined within the boundary layer of sliding
manifold. The system reaches the steady state when J(¢) approaches to a small constant value, e.g., 6.

Combining Egs. (9), (11) and (12), we obtain

. r
X = Axmx + Bsm Fd , V= Csmxa (29a>b)
where
T 0 1 0 0 7
X1 n N
k i k
o BLI BRI
_ m m m
X = x3 9 ASl’n: _c_l _c_z _c_3 _C_S )
G 5 C4 C4 C4 C4
s () 0 0 0 |
0 0
1
0 — .
Bsm= m > Csmz[(b(l) 00 0]
0 0
1 0
Clearly, the system dynamics within the boundary layer is determined by ¢;, i = 1,...,5. The determination

of ¢; should lead to: (1) stability of (29) and (2) tracking performance and external disturbance attenuation

capability.

In order to satisfy the stability requirement, the eigenvalues of matrix 4 should all have negative real parts.
The standard pole placement approach can be employed to determinate the values of ¢;, i = 1,...,5 [22,33].
Taking the Laplace transform of system (29) under zero initial conditions yields

L (s R + (2 4+ 5) 22 F (o)

m

Y(s) =

m m ' mcy

s4+(i+j§)s3+<—+i"—*—

m C4

&c;z)sz i (—&‘4‘+

ﬁ104

ka

k ¢
m L’4)S + ﬁ d)(l) i

N

= Grdy(s)Rd(s) + Gme(s)Fm(S)- (30)
The characteristic equation of the sliding mode dynamics is given as
s+ (iﬂ)ﬁ + <T+¥9 = %9>s2 + (—T“—l 79>s+%¢(1)‘—5 =0. (31)
m Cyq m mcy m Cy m c4 mcy m Cq
Let the desired characteristic equation under the desired eigenvalues w; (i =1,...,4) be
4
H(S —m;) = s+ 018 + o8 + 035+ 04 = 0. (32)
i=1
Comparing Egs. (31) and (32), we obtain the following sliding manifold coefficients:
/g R e Fog/q
C—IZ———(Q_—OH)——EGL a- 7 2+————£<Q_—01>, (33a,b)
4 ky \m ki 4 ki ki ki \m
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a_ 0., G__Mm
T k()

4 (33c,d)

Cy4 - n_'z
where the over-bar indicates the nominal value of the corresponding parameter. Without loss of generality, we
may set ¢4 = 1, and the rest of ¢; can be solved from Eq. (33).

When all the desired eigenvalues are placed in the left-hand side of the complex plane, the stability of
Eq. (29) is guaranteed. In order to satisfy the tracking performance, we may use the final value theorem

tlirn () = hn% sY(s) = hII(l) S[Gry (S)Ra(s) + GF, () F ()] (34)

Assume that both the reference r; and the external disturbance F,, are step signals. By virtue of Eq. (30), we
have

FI‘)
lim (1) = lim | 5G,,,(s) % + 5Gp, (5) ~2| = ry + OF,. (35)
1— 00 s—0 S S

Clearly, we can achieve zero steady-state tracking error and completely reject the external disturbance for
step signals.

The above analysis provides a theoretical explanation of system tracking and disturbance attenuation
capability for special input and external disturbance (both being step signals). In practical situation, both
input signal and external disturbance could be more complicated. It has been mentioned that once the system
is confined in the sliding manifold, the performance will depend on the manifold design. From Eq. (30), one
can see that the transfer function from inputs (for both reference signal and disturbance) to output is strictly
proper. If the poles of Eq. (30) are placed in the open left-hand side of the complex plane, the magnitude of the
transfer function after cutoff frequency will roll off. Typical transfer functions of the sliding manifold are
illustrated in Fig. 7. In other words, the transfer function from the reference input signal to the output has low-
pass filter characteristic, while the transfer function from the disturbance to output plays an attenuation role.
These characteristics of sliding manifold are expected, because generally the tracked reference signal is in low-
frequency band while the disturbance signal is in high-frequency band.

Magnitude (dB)

-100|

-120

-140 P S | P | TR P
100 10! 102 103 10*

Frequency (rad/s)

Fig. 7. Bode diagram of sliding manifold: ——, signal transfer function; — - —, disturbance transfer function.
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4. Simulation results and discussion

In this section, we carry out analyses on the beam structure shown in Fig. 3 to illustrate the control design
and demonstrate the system performance. We first compare the proposed ICSMC with a regular optimal
control, to verify the hysteresis cancellation performance of the former. We then compare the ICSMC with
conventional CSMC and IVSC under a variety of operating conditions to confirm the performance
improvement in terms of tracking accuracy, robustness and control action smoothness. The system parameters
used in the analyses are listed in Tables 1 and 2.

4.1. Comparison with respect to LOR on hysteresis compensation

If one uses a linear constitution relation for the piezoelectric actuator (such as the one shown in Eq. (4)),
after introducing the shunt circuit one will end up with a linear system that is similar to the one described by
Eq. (8) except that the nonlinear hysteresis effect f{Q) does not appear. In that sense, one may treat the
hysteresis effect in Eq. (8) as disturbance/noise, and resort to linear control algorithms such as linear optimal
control (LQR) for control development. It is worth mentioning that the piezoelectric hysteresis could explicitly
be treated as disturbance/noise, only after we introduce the shunt circuit. Meanwhile, using linear control
algorithms is indeed a very natural choice in most of the applications so far, when one neglects the
nonlinearity in piezoelectric constitutive relation. In order to illustrate the hysteresis effect and demonstrate
the system performance improvement due to ICSMC, in this first case study we compare the proposed ICSMC
with a conventional LQR where the hysteresis nonlinearity is not considered in control design and only treated
as a disturbance. Here the reference signal is assumed to be a sinusoid signal. In order to obtain a fair
comparison, we adjust the weightings in the LQR design so that the peak control voltage requirements for
both controllers are the same under zero external excitations. The simulation results are shown in Fig. 8.
Compared to the reference signal, the beam displacement exhibits a significant delay under LQR control,
which is obviously caused by the hysteresis that is treated as a disturbance in the LQR design. ICSMC, on the
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Fig. 8. Tracking control comparisons between LQG and ICSMC: (a) control performance, (b) control voltage, (c) error, ———, reference
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other hand, leads to a very fast controlled response and much reduced delay, due to the hysteresis
compensation explicitly incorporated into the control development as well as the cubic feedback. Most
importantly, ICSMC significantly reduces the tracking error. As shown in Fig. 8§, ICSMC has a 10% peak
tracking error as compared to the 25% tracking error under LQR. This example clearly shows the negative
effect of piezoelectric hysteresis under linear system assumption, and demonstrates the necessity of hysteresis
compensation for high-precision control.

4.2. Comparison with respect to CSMC and IVSC on robustness and control action smoothness

One important feature of the proposed ICSMC is that it has improved tracking performance and control
action smoothness as compared to other nonlinear controls such as CSMC and IVSC. In what follows we
demonstrate the performance improvement in this regard. We assume the system described by Eq. (8) has the
following bounds of uncertainties due to modeling error:

IAm|<m x 10%, |Agl<g x 10%, |Ak|<k x 10%, |Aki|<ki x 10%,

IAL|I<L x 10%, |AR|<R x 10%, |Aky|<ks x 10%, |Aks|<ks x 10%.

In all following case studies, the piezoelectric hysteresis is modeled and included in control development and
in the analyses. We also assume that the bounds for the parameters related to the hysteresis modeling (listed in
Table 1) are 20%.

The detailed derivation of CSMC approach is outlined in Appendix B. The control parameters of CSMC
(listed in Table 3) are chosen in a manner such that the system can follow the command step signal when
external disturbance is absent. Here the reference input is a step signal with magnitude rising from 0 to 10 pm
at 0.1s. We then apply an external disturbance that is also a step signal with magnitude rising from 0 to
100 uN at 2.5s. The control result under CSMC is shown in Fig. 9. Clearly, the beam tip displacement can
indeed follow the command signal from 0 to 2.5s when the external disturbance is absent. Once the external
step disturbance is imposed onto the system, however, CSMC fails to eliminate the tracking error. The control
voltage input is also illustrated in Fig. 9. Corresponding to the reference signal step-up, the control input has a
very large jump at 0.1s. In practical situation, the control input voltage will saturate before it reaches such
large magnitude. Under the assumption that the saturation voltage is +80V, the control result is shown in
Fig. 10. Obviously the chattering phenomenon is present due to the saturation of control input voltage, and
the system performs very badly. This second case study clearly demonstrates the limitation of CSMC in terms
of the command signal tracking under disturbance.

It is generally recognized that IVSC is suitable for robust tracking control [22,33]. In the third case study, we
compare the proposed ICSMC with IVSC (see Appendix C for derivations) under various operating
conditions. In order to obtain a fair comparison, we use the same coefficients of sliding manifolds for both
controllers. The other control parameters are selected in such a manner that the control voltage input and tip
displacement of ICSMC are very close to those of IVSC under the condition that both reference input and

Table 3
Parameters of CSMC

Parameter Value Parameter Value Parameter Value

a —6.5813 x 107 d 0.1 inf y —8.8485 x 107
@ 3.6869 x 10* 3 0.1 T —4.1234 x 10°
a3 2.9569 x 10° 03 0.1 sup T —3.7110 x 10°
Gy 2.6307 x 10° 04 0.1 inf 7 —4.5357 x 10°
sup o —4.8459 x 107 dq 0.1 cl 5418.9

sup o 4.0644 x 104 B 1.4764 & 1.4623

sup o3 3.9934 x 108 sup 8 2.9528 ) 3497.8

sup a4 2.8999 x 10° 7 —6.8472 x 10’ Cs 1

A 8.1x 107* sup y —4.8459 x 107*
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external disturbance are step signals. The control parameters are listed in Tables 4 and 5, respectively. The
reference signal and disturbance situation are the same as assumed in the previous case study.

From Fig. 11, we can see that both IVSC and ICSMC can follow the step command input and reject the
external step disturbance. Further inspection of the control voltage input (shown in Fig. 12) shows that IVSC
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Parameters of IVSC

X. Xue, J. Tang | Journal of Sound and Vibration 293 (2006) 335-359

351

Parameter Value Parameter Value Parameter Value
c 23.174 Cy 1 &o 20
C 1.2 Cs —3959.7 & 100
c3 3581.8 n 42688
Table 5
Parameters of ICSMC
Parameter Value Parameter Value Parameter Value
a —4.8345 x 10° 2 107° 7 76.092
& 1.5651 x 103 01 0.1 sup vy 83.702
o 2.4198 x 10 02 0.1 inf y 68.483
G4 2.6946 x 10° 03 0.1 ¢ 23.174
sup oy —3.5498 x 10° 04 0.1 c 1.2
sup 1.7937 x 10° 34 0.1 c 3581.8
sup o3 32713 x 108 B 1.2119 C4 1
sup oy 2.9702 x 10° sup f8 24237 s —3959.7
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Fig. 11. IVSC and ICSMC comparison: (a) control performance, (b) control voltage; , reference signal; -------- , IVSC; ———,

ICSMC.

exhibits control voltage sudden change at 0.1 s when the command signal has a sudden jump. It is worth
mentioning that in the IVSC design, we have already incorporated a modified proper continuous function to
alleviate the chattering phenomenon [22]. The current simulation is under single mode discretization, and thus
the sudden and drastic change of control voltage does not lead to significant tracking performance
deterioration. Nevertheless, it can be envisioned that in practical implementation where the beam has infinitely



352 X. Xue, J. Tang | Journal of Sound and Vibration 293 (2006) 335-359

10 : : : : — : : :
(a) B ettt
=
3 5 ]
€ P
o) K
O 1
O Off i
(2] |
2 |
_5 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10 o~ _ - _ - ___
s |® -
S 5f 7/ 1
é /
/
% Ore 7
[}
)
_5 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)
Fig. 12. Control voltage comparison: (a) IVSC, (b) ICSMC; -------- , IVSC; ———, ICSMC.

many degrees of freedom, such voltage chattering would trigger the high frequency un-modeled dynamics. The
control action of ICSMC, on the other hand, is much smoother than that of IVSC as expected. At 0.1s,
the control voltage of ICSMC still exhibits a small discontinuity due to the reference jump. However, the
magnitude is very small as compared to that of IVSC. After a step external disturbance is imposed onto the
system at 2.5s, both IVSC and ICSMC can eliminate the tracking error and their control voltage inputs are
similar.

Fig. 13 illustrates a square wave tracking control comparison between IVSC and ICSMC. A Gaussian
random is added to the system as an external disturbance. Both IVSC and ICSMC can follow the square wave.
Once again, the control input of IVSC shows large jumps at changing edges of square wave. Close inspection
of the beam tip displacement shows that ICSMC has better control robustness as compared to IVSC under the
same random disturbance. In order to more clearly demonstrate the random disturbance attenuation, we
present another case study in Fig. 14, where the reference input is set to be zero and the system is under
Gaussian random disturbance. This is a typical case of vibration suppression. It is obvious from Fig. 14 that
ICSMC has much improved disturbance attenuation capability than IVSC, which is due to the cubic state
feedback that can respond faster and more effective at early stage when the beam tip is disturbed away from
the zero position. Fig. 15 illustrates another beam vibration attenuation comparison. In this case, an initial
velocity is imposed on beam tip, and external disturbance is still Gaussian random noise. Both IVSC and
ICSMC show good vibration attenuation capability, but the result of ICSMC is better than that of IVSC.
ICSMC has smaller over-shoot and requires less time to reach steady state.

5. Conclusion

In this research, a robust and high precision control methodology is developed for a piezoelectric actuator
with hysteresis compensation. An RL shunt circuit is introduced to the piezoelectric actuator to form an
actuator network, which leads to two coupled dynamic sub-systems that can be cast into standard state-space
format for control development. With this actuator circuit configuration, the charge and/or current in the
piezoelectric actuator now become independent state variables that can be measured and fed back, which
enables a direct hysteresis compensation.
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An ICSMC scheme, which combines the advantages of conventional CSMC and IVSC, is then developed
and analyzed. It is shown that this ICSMC algorithm leads to much improved control precision as compared
to LQR when piezoelectric hysteresis is present. This comparison clearly demonstrates the necessity of
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Fig. 15. Comparison of free vibration attenuation between IVSC and ICSMC:
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hysteresis compensation. Analyses are also provided to illustrate the improved tracking control and vibration
attenuation accuracy, enhanced control robustness under external disturbance, and better control action
smoothness of the proposed ICSMC as compared to conventional CSMC and IVSC.
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Appendix A. Dynamic equations of beam structure integrated with piezoelectric actuator

The equations of motion of a beam subject to piezoelectric actuator control (Fig. 3) can be derived using the
Hamilton’s principle. Following the procedure outlined in Ref. [20], we have

153
/ [0Tp + 0T, — 3Uy — 60U, + W ,]dt =0, (A.1)
14

where subscript “»”” and “p” refer to beam and piezoelectric actuator, respectively. T, Uy, U, and W, are,
respectively, the kinetic energy of the integrated system, the potential energy of the beam, the elastic and
electrical energy of the piezoelectric actuator, and the virtual work term.

Using Egs. (8a) and (8b) and beam theory, we have

T =Ty+T,="5mpg*+1m,q, (A.2)

Ub = %kqu, (A3)
where
Iy

g 2 2 g 2
m= [ psdF ax my = [ pa0Pads, k= [ B/ . (Ad)
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Here, AH = H(x — x;) — H(x — x,), and H(x) is the Heavyside step function. All relevant notations are listed
in the nomenclature.
The electrical displacement D of the piezoelectric patch is discretized as

D = yp. (A.5)

Using the constitutive relation (7a,b), the elastic and electrical energy variation of the piezoelectric actuator
can be obtained as

SU, = /(Tés—i—EéD)dV
V

_ / [(Pys — hs1 DYOs + (g1 (@5, + EB)s + 2yng, D + (BT DHODIAV
14

= kpqdq + kpgpdq + kpeqdp + kpppdp + Aphy{ B33 DYop, (A.6)

where

ox2

I3 2
kpy = /0 Fyohy, (a ¢(x)> WAH dx,

Ox?
Iy az (x
b= [ Fpasaly + e |22y

Iy 2
k, = /O ey [M] AH dx,

Iy
kpp = / A,(2h3193)W*AH dx. (A7)
0

Three terms are involved in the virtual work, i.e., the voltage across the piezoelectric actuator, the external
disturbance, and the beam structure damping;:

oWy = F.op + Fndq — gqdq, (A.8)
where

Iy

/;, lb
— _ _ 2
F, _/0 VowpWAH dx, Fy, _/0 F(x,Hp(x)dx, ¢ —/0 cpp(x)” dx. (A.9)

Substituting the kinetic energy, potential energy and virtual work into Eq. (A.7), assuming that the electrical
displacement is independent of the spatial coordinates, i.e., y = 1, and assuming D = Q/A4,,, we have

mg+gq+kq+kiQ=Fy, (A.10)
T 91 _
k2Q+kSQ+hp ﬂ33 Wi~ Vas (A.11)
PP
where
k kpp ke
m=mp+m, k=ky+k, ki="L, ky=—L" ky=-L. A.12
b 'p b P 1 Ap 2 (Ap)z 3 Ap ( )
After we introduce the resistance/inductance shunt circuit, the system equation becomes
mg+gq+kq+k Q= Fy, (A.14)
LQ+RQ+k2Q+k3q+hP{B§3 %} =V (A.15)
P°p
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Appendix B. Continuous sliding mode control (CSMC) design

The derivation is similar to that of ICSMC. Let

£ = [¢(D)x1, X2, X3, X4] . (B.1)
Then Eq. (9) can be re-written as
2= A.2— Bf(x3) + Bu+ DF,,, (B.2)
where
I 0 o) 0 0 7
k1 g kK
. m ¢(l) m m
A, = 0 0 0 e (B.3)
ks 1 _k _R
L ¢(]) L L
We define the sliding manifold as
s=C'z—cry. (B.4)
Let the control input be
u=—Kz+f(x3) — ug, (B.5)
where
=[5 —ra 52,23, 2] (B.6)

Applying the reaching condition (14), and using Egs. (B.2) and (B.3), we have

5§ = sC"[A.Z — Bf (x3) + Bu+ DF,] — cii. (B.7)
Substituting Eq. (B.5) into Eq. (B.7) yields
5§ = sC" B{[oe — KJZ + [B + yra + tia — ual}, (B.8)
where
o= (CTB) ' CT A = [0, a2, 03, 4], (B.9)
B=(C"B)"'C'DF,, + Af, (B.10)
y=—(C'B)"'CTE, 1=—(C"B)'¢, (B.11,B12)

pofok L gk 1] A = f(x3) — f(x3) (B.13.B.14)
“mey T Le) 0 T T

Here we define

sup 7 +inf

f=— . B.15
z 2 (B.15)
In order to satisfy the reaching condition (14), we may choose the following control parameters:
C'B3
K; = d; + (sup ai—ozi+5i)¥, 8;>0, i=1,2,3,4, (B.16)
T

P 5 ~ - . sC'B
ud=ﬁ+“7csrd+{[supﬁ—ﬁ]+(V—V)rd-i-(f—f)rd-i-(sd}T, 04>0, (B.17)
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where
R sup y whenr;>0, B8
7= inf y  when r; <0, (B.18)
. sup t  when 7z >0,
t= { inf ¢ when i; <0, (B.19)

A is again the boundary layer thickness of the sliding manifold.
Substituting Egs. (B.16) and (B.17) into Eq. (B.8), we obtain

4
5§ = s{Z[ai — G1sCTBE + (B~ )+ (7 — Dra + (¢ — DialsCTB

i=1

4
> sup o~ 8+ SCTBEY 5~ [(sup — )+ (G — 3+~ Da+ 5d](scTB)}}. (B20)
i=1 L

Observe Egs. (B.16) and (B.17). Clearly, if the following conditions are satisfied, the reaching condition (14)
can be guaranteed:

|sCTBxi|>2, i=1,2,3,4, (B.21)

|sCTB|>J. (B.22)

The sliding manifold (B.4) can be derived using a similar pole placement procedure outlined in Section 3.2.

Appendix C. Integral variable structure control (IVSC) design

The classical design of IVSC involves the reaching mode and the sliding mode. By virtue of Egs. (12) and
(9), we have

§= CT[AX - Bf(X3) + Bu + DFm] + CS[rd - d)(I)X]]
=[C"4 — Ay)x — C"Bf (x3) + C'Bu+ C"DF,, + csr4z2. (C.1)

In what follows we let the control input be decomposed into the equivalent control input u.q and the
switching control input u:

U = Ueq + Us. (C.2)

The equivalent control input is defined as the solution of § = 0 under conditions that both the external
disturbance and the uncertainties are absent:

Ueq = —(CTB)_I[(CT/_I — A¢)x + csrq] +f(X3). (C.3)

The switching part is used primarily for satisfying the reaching condition and also for overcoming the
external disturbance and the uncertainties. When the trajectory of the system is in the vicinity of the sliding
manifold, the switching part of the controller constraines the system to follow the sliding manifold. In theory,
the sign discontinuous function can be used as the switching control action [31,32]. However, the control
action triggered by the sign function is in the high frequency band and can lead to the chattering phenomenon
and excite the high frequency un-modeled dynamics of the system [22]. In order to alleviate the chattering
phenomenon, the sign function is generally replaced by a proper continuous function, which is further
improved by using a modified proper continuous function to account for different operating conditions [22]:

us = —nMe(s), (C4)
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where
S
Is| 4+ &o + E1lp(Dx1 — ral”

Me(s) = (C.5)
Here &y and ¢, are positive constants.

It can be easily verified that when the constant switching gain # is chosen in the following manner the
reaching condition (14) can be guaranteed:

n= ﬁ:(sup ap)lxi| + sup Af + (sup AD)|Fy,| + (sup AB)|rl, (C.6)
where h
AAd = (C"B)N(CTA — Ay) — [CTBI'[CT 4 — 4y] = [a1, a2, a3, aq), (C.7)
AB = {(C"B)™' —[C"B] "}es, (C.8)
AD =[C"BI"'C™D. (C.9)

The sliding manifold can be derived using a similar pole placement procedure outlined in Section 3.2.
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